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Abstract. Goods transportation has increased in recent years due to new and 

more intensive distribution processes, such as door-to-door distribution 

generated by e-commerce and other marketing and logistics strategies. 

Transportation processes generates negative impacts in society and 

environment since it produces traffic jams and pollution. This paper presents a 

multiobjective model that simultaneously optimizes freight transportation and 

inventory quantity through collaboration between customers and suppliers, and 

also considers the distribution process CO2 emissions. With this model decision 

makers in logistics can find a suitable combination between logistics costs and 

pollutants emission reduction. This model is solved using a multiobjective 

genetic model based on the NSGA II algorithm. 

Keywords: goods distribution, multiobjective model, genetic algorithm, 

collaborative inventory, CO2 emissions. 

1 Introduction 

The highly dynamic transportation processes generated by new marketing processes 

and changes in consumers habits have been studied for several years usually pursuing 

their optimization through models such as the Traveling Sales Problem (TSP) or the 

Vehicle Routing Problem (VRP) [1, 2]. However, these transport processes not only 

impact companies´ economics, but also society and the environment since it generates 

congestion as well as physical and chemical pollution. Therefore, professionals and 

academics in this area are interested in the search for processes that will improve both, 

economics as well as social/environmental conditions for companies and society [3]. 
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Many authors have argued that collaboration among supply chain participants is one of 

the main strategies to reduce goods distribution cost, highlighting the Vendor Managed 

Inventory-VMI as one of the most important ways in which companies can collaborate 

[4]. Through VMI the inventory quantity for multiple companies can be optimized, 

allowing for distribution systems configurations with higher efficiency. This effectively 

reduces costs and transport activities intensity, as a consequence of a better inventory 

allocation [5]. This can be done with the Inventory Routing Problem -IRP optimization 

model, which, based on the collaborative inventory, allows transportation and inventory 

costs to be simultaneously reduced [6]. 

This paper analyzes the effect that inventory collaboration has on CO2 emissions in 

distribution processes. Inventory and transportation in a distribution network are 

optimized using a multiobjective model with tree objective functions, namely: 

inventory cost, transport costs and CO2 emissions. This model is based upon customers 

and suppliers´ collaboration under the Vendor Managed Inventory (VMI) strategy. In 

order to analyze the proposed multiobjective model benefits, the results are compared 

with the single transport optimization process through the Vehicle Routing Problem 

(VRP). 

2 Inventory Collaboration and Optimization 

Collaboration in logistics and supply chain is understood as the joining efforts of 

several organizations seeking superior benefits than those achievable by acting 

separately. For this, companies cooperate in processes such as transportation, inventory 

management, storage, facility design, information exchange and other logistics 

activities [1, 7, 8]. Since many years, supply chain collaboration has been established 

through approaches such as Quick Response (QR), Efficient Customer Response 

(ECR), Continuous product Replenishment (CPR), Vendor Managed Inventory (VMI), 

Planning, Collaborative Forecasting and Replenishment (CPRF) and Centralized 

Inventory Management, among others [1, 9, 10]. According to Díaz-Batista and Pérez-

Armador [11], inventory collaboration produces a lower total annual cost than when 

companies work individually, generating performance improvements in the entire 

supply chain [12-14]. The main problem is the inventory allocation and transportation, 

which has been studied by multiple authors [15-17]. The most used strategy for it is the 

VMI [18]. The joint assignment of inventory and transportation can be done by using 

the IRP model [6, 19-23] as well as with multiobjective optimization approaches.  

The multiobjective optimization models must be solved using complex procedures,  

the most widely used methods are: MOGA (Multi- Objective Genetic Algorithm), 

NSGA y NSGA-II (Nondominated Sorting Genetic Algorithm), SPEA y SPEA2 

(Strength Pareto Evolutionary Algorithm), PAES (Pareto Archived Evolution 

Strategy), PESA (Pareto Envelope-based Selection Algorithm), MO-VNS 

(Multiobjective Variable Neighbourhood Search), DEPT (Differential Evolution with 

Pareto Tournaments), MO-TLBO (Multiobjective Teaching-Learning-Based 

Optimization), MOABC (Multiobjective Artificial Bee Colony), among others [24-28]. 
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3 Related Works 

Many authors have studied the effect of using multiobjective approaches to 

distributions problems. A lot of research in multiobjective transportation problems is 

available, however much less for models considering inventory and transport together 

[24]. Some works that integrated transportation and inventory management through 

multiobjective approaches are: 

Seferlis and Pechlivanos [23] propose a model to minimize inventory level and 

maxmise the difference between generated revenues and associated costs. Chen and 

Lee [29] presented a four-objective model to optimize profits, safe inventory levels, 

customer service and robustness under demand uncertainties. By solving a multi-

product and multi-time period production/distribution planning decisions problems, 

Liang [30] minimizes the total costs and total delivery time. Liao et al. [31] proposed a 

model for Minimizing total costs and maximizing demand satisfaction and response 

level. Azuma et al. [32] and Azuma et al. [33] present a model aiming to minimize 

transport and inventory costs using the IRP; Shankar et al. [34] propose a three-echelon 

capacitated plant location-distribution network in order to minimize total costs and 

maximize demand fulfillment.  

Afshari et al., [35] minimizes the total cost of transportation, establishment/facility 

location, and inventory management, as well as customer satisfaction in a multi-period, 

multi-commodity, distribution-service network, Nekooghadirli et al. [36] minimize the 

costs and the average delivery time. Pasandideh et al. [37] propose a Multi-product 

multi-period three-echelon model that minimizes total costs and maximizes the amount 

of product sent to customer. Pasandideh et al. [38] similar to the later work, minimizes 

the mean and the total cost variance in a Supply Chain network. Zapata [28] and Arango 

et al [39] presented a multiobjective model to minimize inventory and transport costs, 

service level and required trips thorugh collaboration in a suppliers and customers 

network. Arango and Zapata [40] minimize transportation Costs, Inventory Costs and 

Service Level using the IRP.  In most of the before mentioned works, authors were 

interested only in the companies’ economics, since the goal of their research was to 

improve company performance or customer satisfaction.   

Only Zapata [28] and Arango et al. [39] mentioned the reduction of trips required as 

a measure to mitigate transportation negative impact. Furthermore, these models 

optimize inventory and transport cost as a sum of both magnitudes, which may result 

in lower costs for companies but adverse environmental effects, such as an increase in 

trips or higher pollutants emissions. The model proposed in this article presents a new 

approach in which inventory and transport costs are treated apart while separately 

considering CO2 emissions. The aim is to evaluate different transport and inventory 

relationships and mitigate their environmental effect. 

4 Methodology 

With the aim of minimizing CO2 emissions caused by the goods distribution process, a 

multiobjective model using a VMI background is proposed.  
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This model includes three objective functions: inventory cost, transportation costs 

and CO2 emissions. The result of the multiobjective model in a network conformed by 

one supplier and 15 customers, to be compared with the single transport optimization 

obtained by using the Vehicle Routing Problem – VRP. In the optimization processes 

two distinct genetic algorithms were used: a simple genetic algorithm for solving the 

VRP and an algorithm based on the NSGA2 for the multiobjective analysis, similar to 

what is presented in [28, 39, 40]. 

The emission factor of a typical urban goods distribution vehicle was used to analyze 

the CO2 emission effect. The vehicle corresponds to a VAN with an average city 

emission of e = 190 g of CO2 / km [41]. This parameter is multiplied by the number of 

kilometers traveled, in order to calculate the emitted CO2 gases amount. The 

formulation for the multiobjective model with three objective functions is presented in 

Eq. 1 to 4.  

Equation (1) is the objective function that seeks to minimize transport costs, where 

xij
kt is a binary variable that is equal to 1 if the vehicle k has to travel from I to j in period 

t, and cij is the corresponding cost. Equation (2) is the functions for minimizing 

inventory both at the supplierI0
t  and at the customers Ii

t. Equation (3) minimizes the 

Table 1. Input parameters Customers. 

Customer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Demand each 

Period 32 36 91 52 76 10 85 79 22 36 68 46 55 65 73 

Inventory Cost 

0.0

2 

0.0

3 

0.0

3 

0.0

2 

0.0

2 

0.0

3 

0.0

4 

0.0

4 

0.0

2 

0.0

4 

0.0

2 

0.0

2 

0.0

2 0.03 0.02 

Initial Inventory 32 72 182 52 152 20 85 79 22 72 136 46 55 65 146 

X position 237 180 141 163 282 455 326 235 412 113 266 257 363 158 423 

Y position 182 332 388 188 374 296 332 432 488 46 302 23 22 81 95 

Supplier 

Production quantity by period 826  X position 

31

2 

Inventory cost 0.3  Y position 

36

3 

Initial inventory 2042   Number of periods 5 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝐺(𝑔1, 𝑔2, 𝑔3), (1) 

𝑔1 =    ∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘𝑡

𝑘∈𝐾𝑖∈𝑣𝑖∈𝑣𝑡∈𝜏

 ,   (2) 

𝑔2 =    ∑ ∑ ℎ𝑖𝐼𝑖
𝑡

𝑡∈𝜏𝑖∈𝑣′

+ ∑ ℎ0𝐼0
𝑡

𝑡∈𝜏

 ,  (3) 

𝑔3 =    ∑ ∑ ∑ ∑ 𝑒 ∙ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑘𝑡  .

𝑘∈𝐾𝑖∈𝑣𝑖∈𝑣𝑡∈𝜏

 (4) 
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CO2 emissions calculated as the sum of the distances multiplied by the vehicle CO2 

emission factor. This objective function is restricted to the subsequent equations that 

assure the correct distribution process and correspond to those of the IRP Model 

according to Archetti et al., [42] and Arango et al. [6]. 

For a thoughtful explanation of the restrictions, readers may refer to [6, 42] and [19]. 

The input parameters are obtained from the 15 customers and one supplier instance 

proposed by Archetti et al., [42]. In this case, the inventory amount that can be stored 

in each of the customers was increased, as a strategy to generate a lower distribution 

costs and a decreased CO2 Emissions. The input data for location, initial quantity and 

inventory cost for customers and the supplier, as well as other instance information are 

presented in Table 1. 

5 Results 

The multiobjective model, in which the transport costs, inventory costs and CO2 

emission are optimized simultaneously, generates a set of 13 individuals due to the 

solutions non-dominance.  

𝐼0
𝑡 = 𝐼0

𝑡−1  + 𝑟0
𝑡−1 − ∑ ∑ 𝑞𝑖

𝑘𝑡−1

𝑖∈𝑣𝑘∈𝐾

  ,                        (5) 

𝐼0
𝑡 ≥ ∑ ∑ 𝑞𝑖

𝑘𝑡

𝑖∈𝑣

𝑌𝑖
𝑘𝑡

𝑘∈𝐾

  ,                               (6) 

𝐼𝑖
𝑡 = 𝐼𝑖

𝑡−1 + ∑ ∑ 𝑞𝑖
𝑘𝑡

𝑖∈𝑣𝑘∈𝐾

 −   𝑑𝑖
𝑡     ,                 (7) 

𝐼𝑖
𝑡 ≥ 0 ,                                      (8) 

𝐼𝑖
𝑡 ≤ 𝐶𝑖  ,                                       (9) 

𝑞𝑖
𝑘𝑡 ≤ 𝐶𝑖 − 𝐼𝑖

𝑡  ,                                    (10) 

𝑞𝑖
𝑘𝑡 ≤ 𝐶𝑖𝑌𝑖

𝑘𝑡 ,                                    (11) 

∑ 𝑞𝑖
𝑘𝑡

𝑖∈𝑣

 ≤ 𝑄𝑘  ,                                    (12) 

∑ 𝑞𝑖
𝑘𝑡

𝑖∈𝑣

 ≤ 𝑄𝑘𝑌0
𝑘𝑡  ,                                   (13) 

∑ 𝑋𝑖𝑗
𝑘𝑡

𝑖∈𝑣,𝑖<𝑗

+  ∑ 𝑋𝑗𝑖
𝑘𝑡

𝑖∈𝑣,𝑗<𝑖

= 2𝑦𝑖
𝑘𝑡  ,              (14) 

∑ ∑ 𝑋𝑖𝑗
𝑘𝑡

𝑗∈𝑆𝑖∈𝑆

≤   ∑ 𝑦𝑖
𝑘𝑡

𝑖∈𝑆

− 𝑦𝑚
𝑘𝑡     ∀ 𝑠𝑢𝑏𝑠𝑒𝑡   𝑆 ⊆ 𝑉  ,     (15) 

𝑞𝑖
𝑘𝑡 ≥ 0; 𝑄𝑘 ≥ 0; 𝐼𝑖

𝑡 ≥ 0; 𝑑𝑖
𝑡 ≥ 0; 𝐶𝑖  ≥ 0. 

 
(16) 

79

Multiobjective Model to Reduce Logistics Costs and CO2 Emissions in Goods Distribution

Research in Computing Science 147(3), 2018ISSN 1870-4069



 

It is not possible to argue that one of the solutions is better than the others, for that 

reason, the decision maker, depending on his preference, may choose any of the model 

produced solutions.  

Table 2 shows the results for the 3 optimized objective functions generated by the 

multobjective algorithm, presenting the CO2 emissions, inventory, transport and total 

cost for each individual. 

From Table 2 it can be observed that the lower the inventory level, the higher the 

transport cost and the CO2 emissions, this as a consequence of an increase in 

transportation intensity in order to minimize inventory. This behavior is caused because 

the three-functions multiobjective model searches the best solution for every objective 

function without excessively increasing the others. In the solutions set produced by the 

multiobjective model, the individual number 1 is the solution that yields the lower CO2 

emissions, as observed in Table 1. Presented in Fig. 1, individual number 1, allows to 

serve the customers and satisfy its demand without visiting all customers in every 

period due to the collaboration between customers and supplier through the VMI. This 

generates an increase in inventory levels but reduces transportation and CO2 emissions. 

In order to compare these solutions, the distribution problem was solved supplying 

all customers in each period, what minimizes inventory costs in customers but increases 

transportation. For that, the Vehicle Routing Problem – VRP was used, assuming that 

Table 2. Three objective functions multi-objective model results. 

Solutions Transport cost CO2 Emissions Inventory cost Total cost 

1 3288.4 624.8 445.0 3733.3 

2 4982.8 946.7 404.3 5387.1 

3 5111.9 971.3 403.7 5515.6 

4 3502.8 665.5 413.1 3915.9 

5 5427.4 1031.2 403.7 5831.0 

6 3902.6 741.5 406.9 4309.5 

7 3642.3 692.0 407.5 4049.9 

8 4156.1 789.7 404.9 4561.0 

9 3304.3 627.8 421.3 3725.5 

10 5012.8 952.4 404.2 5417.0 

11 4831.7 918.0 404.8 5236.4 

12 5692.9 1081.7 403.4 6096.3 

13 3580.2 680.2 411.3 3991.5 

Table 3. Results comparison for the models. 

Model Total Cost Transport 

Cost 

Inventory Cost CO2 Emissions 

VRP. 8918.8 8612.5 306,3  1636,4 

Multiobjective. 3733.3 3288.3 445.0 624.8 
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every customer must be served every period, explaining why there is no customers 

inventory at the each period end, as well as no initial inventory need. For that 

distribution process, the transport cost is 1722.5 for each period, which corresponds to 

a total cost of 8612.5 for the 5 periods. This single VRP cost is higher than the transport 

cost for all individuals generated by the three-functions multiobjective model.  

Table 3 presents the comparison of the distribution process with the VRP and 

individual 1 of the multobjective model, since this is the solution that generates the 

lower CO2 Emissions. In Table 3 can be observe that the inventory is lower in the VRP 

solution, but it generates a higher costs and rises CO2 emissions, making it unattractive 

for companies and the environment. 

The lower inventory cost in the VRP is caused by the transportation intensity that 

allows minimizing the inventory amounts required in customers facility. However, such 

intensity directly increases transport costs and the distances, what ultimately causes 

higher CO2 emissions. A similar analysis could be made for the other solutions 

proposed by the algorithm and similar results will be found. 

The results allow inferring that the multiobjective model generates solutions that 

improve the distribution process performance, both in cost and emissions, through 

evaluating different relationships between transport and inventory assignments. The 

proposed model results are better than the produced by the well-know VRP. However 

for a more comprehensive affirmation about the goodness of the multiobjective model, 

a comparison with more complex routing algorithms as well as trials with more and 

difficult instances are to be made. 

6 Conclusions 

In this paper, the collaborative inventory process and its effect on the pollutant gases 

emission are analyzed from a multiobjective perspective using an optimization model 

Inventory 

Customer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Period 1 0 167 0 0 0 45 0 0 109 0 0 215 275 0 427 

Period 2 158 0 0 253 0 0 183 316 0 128 317 0 0 386 0 

Period 3 0 0 288 0 329 0 271 0 0 0 0 0 0 0 0 

Period 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Period 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Routes sequence (Routes starts on Depot -0- and ends on it.) 

Period 1 0 6 9 15 12 13 2 0 0 0 0 0 0 0 0 0 

Period 2 0 4 14 10 1 11 7 8 0 0 0 0 0 0 0 0 

Period 3 0 5 3 7 0 0 0 0 0 0 0 0 0 0 0 0 

Period 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Period 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fig. 1. Individual 1 generated by the three-functions multiobjective model. 

 

81

Multiobjective Model to Reduce Logistics Costs and CO2 Emissions in Goods Distribution

Research in Computing Science 147(3), 2018ISSN 1870-4069



 

that includes three objective functions: inventory cost, transportation costs and CO2 

emissions, which are optimized simultaneously. This multiobjective model, as expected 

based on available literature, generates a set of optimal and non-dominated individuals, 

which achieves better results than the traditional, single transport optimization 

procedures, since total cost and CO2 emissions are higher for the VRP. The increase in 

cost by the VRP model is caused by the inventory reduction at customers what 

mandates supplying customers every period. This behavior is known as a local 

optimum, in many cases worse than the global logistics optimization.  

Through inventory collaboration it is possible to reduce goods distribution cost, and 

simultaneously minimize CO2 emissions due to the logistics activity. Based on the 

results found in this paper, the search for the single and individual optimization of 

transport or inventory costs generates large increases in logistical costs as well as  CO2 

emissions, which is neither beneficial for Company nor for the environment. However 

this conclusion applies only for the specific analyzed case. For a more comprehensive 

affirmation about the virtue of the multiobjective model, it should be tested with more 

complex instances, as well as compared with more sophisticated routing algorithms. 

As future Work it will be interesting to study the possibility of including other 

objective functions that evaluates the performance of distribution processes such as 

Service level, process variability or risk [43]. It would also be interesting to consider 

distribution networks analysis involving several suppliers, several products and also 

more than one single Supplier-Customers echelons. Some authors have explored [6, 40, 

43-44] these research lines, making their work an interesting starting point. 
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